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Abstract
I consider a general block-tridiagonal matrix and the corresponding transfer
matrix. By allowing for a complex Bloch parameter in the boundary conditions,
the two matrices are related by a spectral duality. As a consequence, I derive
some analytic properties of the exponents of the transfer matrix in terms of the
eigenvalues of the (non-Hermitian) block matrix. Some of them are the single-
matrix analogues of results holding for Lyapunov exponents of an ensemble
of block matrices, which occur in models of transport. The counting function
of exponents is related to winding numbers of eigenvalues. I discuss some
implications of duality for the distribution (real bands and complex arcs) and
the dynamics of eigenvalues.

PACS numbers: 02.10.Yn, 72.15.Rn, 72.20.Ee

1. Introduction

A tridiagonal Hermitian matrix whose entries are square matrices of size M is a block-
tridiagonal matrix. By denoting the diagonal blocks as Hi = H

†
i and the blocks in the

next upper diagonal as Li , the eigenvalue equation written in the block components of an
eigenvector u is

Hiui + Liui+1 + L
†
i−1ui−1 = Eui. (1)

We may view Hi as Hamiltonian matrices of a chain of subsystems, each with M internal
states, sequentially coupled by matrices Li . We shall only require that det Li �= 0. Band
matrices are in this class, with non-diagonal blocks being triangular. Random band matrices
are studied for quantum chaos and transport, mainly by numerical means [1] or by a mapping
on a nonlinear supersymmetric sigma model [2]. The block structure is typical of tight
binding models, as in Anderson’s model for the transport of a particle in a lattice with
impurities [3]. Here, the matrices Hi are the Hamiltonians of isolated slices transverse to
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some direction and the matrices Li contain the hopping amplitudes between lattice sites of
neighbouring slices. Tridiagonal arrays of random matrices were studied in the context of
multichannel scattering in mesoscopic or nuclear physics [4] or as multimatrix models in
the large size limit [5]. For recent reviews of applications of random matrices in physics,
see [6, 7].

The second-order recursive character of (1) makes it useful to introduce a transfer matrix
Ti(E), of size 2M × 2M:(

ui+1

ui

)
=

(
L−1

i (E − Hi) −L−1
i L

†
i−1

I 0

) (
ui

ui−1

)
. (2)

The block components of the eigenvector are reconstructed by applying a product of transfer
matrices to an initial block pair. A length N of the chain corresponds to the transfer matrix
T (E) = TN(E) · · · T1(E):(

uN+1

uN

)
= T (E)

(
u1

u0

)
. (3)

The transfer matrix is the main tool for investigating the boundary properties of the
Hamiltonian’s eigenvectors, or the transmission matrix of the chain coupled to leads. I
developed a theory for transfer matrices of general block-tridiagonal Hamiltonians [8, 9].
Recently the formalism was applied to transport in nanotubes and molecules,and generalized to
allow for non-invertible off-diagonal blocks [10–13]. In this paper I describe some interesting
consequences of a nice algebraic identity involving the characteristic polynomials of the
two matrices [8]. Though this spectral duality holds in general, here I restrict to Hermitian
block-tridiagonal matrices because of their relevance in physics.

For a chain of length N we must provide boundary conditions. With periodic boundary
conditions we require L0 = LN for Hermiticity and u0 = uN, uN+1 = u1. However, it turns
out to be very convenient to allow for a complex Bloch parameter

u0 = 1

z
uN uN+1 = zu1. (4)

Therefore, the Hamiltonian matrix is block-tridiagonal with corners

H(z) =




H1 L1
1
z
L

†
N

L
†
1 H2 L2

L
†
2 . . . . . .

. . . . . . LN−1

zLN L
†
N−1 HN


 . (5)

It is Hermitian only for |z| = 1. Boundary conditions with z = eiϕ arise when decomposing
the eigenproblem (1) for an infinite periodic chain of period N in the eigenspaces of the N-block
translation operator, as well as in the topology of an N-site ring with a magnetic flux through
it. In general, it is

H(z)† = H(1/z∗). (6)

The non-Hermitian tridiagonal matrices (M = 1), with z = eNg and g � 0, were introduced by
Hatano and Nelson [14] in a study on vortex depinning in superconductors which promoted a
burst of research, see, for example, [15–18]. Spectral properties were analysed in greater detail
by Goldsheid and Khoruzhenko [19] who proved that, for g > gcr , eigenvalues corresponding
to extended states begin to migrate in the complex plane and distribute along the level curve
of the single Lyapunov exponent of the model, γ (E) = g. The two wings of real eigenvalues
correspond to exponentially localized eigenvectors, which are insensitive to the boundary.
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These features also appear in the more difficult case of block matrices. For |z| sufficiently
greater or smaller than unity, the block matrix develops complex eigenvalues which are seen
numerically to distribute along lines. The eigenvalues of an eptadiagonal matrix (M = 3) with
diagonal disorder and unit hopping amplitudes are shown in figure 2.

It is intuitive that there is a connection between boundary properties of eigenvectors, which
are described by the transfer matrix, and the response of energy eigenvalues to variations of
boundary conditions, namely, the Landauer and Thouless approaches to transport. This
intuition has a formulation in the spectral duality. After a short review of duality (section 2),
I derive several analytic properties of the exponents of a single transfer matrix (section 3). In
particular, I evaluate the counting function of exponents as the winding number of trajectories
of eigenvalues of the source block matrix. In section 4, I use duality to describe qualitatively the
distribution and dynamics of eigenvalues of Hermitian and non-Hermitian block-tridiagonal
matrices.

2. Spectral duality

In this section I review some basic properties of a transfer matrix T (E) of a chain of length
N, with L0 = LN [8, 9].

T (E) is a matrix polynomial in E of degree N, with a nonzero determinant independent
of E and diagonal blocks Hi :

det T (E) =
N∏

i=1

det L†
i

det Li

. (7)

The block structure of the Hamiltonian and the corresponding factorization of the transfer
matrix, makes a typical property of transfer matrices apparent.

Proposition 1. The symplectic property

T (E∗)†�NT (E) = �N �N =
(

0 −L
†
N

LN 0

)
. (8)

Proof. It is a consequence of L0 = LN and of the factorization of T (E) into a product of
matrices Tk(E), whose inverse is Tk(E)−1 = �−1

k−1Tk(E
∗)†�k . �

Corollary. If z is an eigenvalue of T (E), then 1/z∗ is an eigenvalue of T (E∗). For real E,
both z and 1/z∗ are in the spectrum of T (E). If T (E∗) = T (E)∗, then both z and 1/z are in
the spectrum of T (E).

These statements summarize in the useful identity

det[T (E) − z] = z2M det T (0) det[T (E∗) − 1/z∗]∗. (9)

Let u, with blocks u1, . . . , uN , be an eigenvector of H(z) with eigenvalue E. Then, by
equation (3) and after imposing the boundary conditions (4),(

zu1

uN

)
= T (E)

(
u1

1/zuN

)
(10)

which means that z is an eigenvalue of T (E) with an eigenvector of blocks zu1 and uN .
However, the converse is true: given an eigenvector ofT(E) with eigenvalue z one reconstructs,
via products of matrices Tk(E), the whole eigenvector of H(z) with eigenvalue E. Therefore,
det[E − H(z)] = 0 if and only if det[T (E) − z] = 0; this duality among eigenvalues is made
precise as an identity among characteristic polynomials [8].
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Proposition 2. The spectral duality

det[E − H(z)] = (−z)−M det[L1L2 . . . LN ] det[T (E) − z]. (11)

Proof. We must show that det[T (E) − z] is a polynomial in E of degree NM with leading
coefficient (−z)M det[L1 · · ·LN ]−1. To this end, we first consider the leading terms in E of
both sides of equation (9): the equality implies that the leading term of det[T (E) − z] is
proportional to zM . Next we derive the following leading block stucture of T (E):

T (E) ≈
(

ENQ −EN−1QL
†
N

EN−1LNQ −EN−2LNQL
†
N

)
Q = (L1 . . . LN)−1.

The leading term in E of det[T (E) − zI ] with the constraint of being proportional to zM , is
provided by the diagonal factors det(ENQ) and det(−zI). �

Corollary. If Im E �= 0 then T (E) has no eigenvalues on the unit circle.

Proof. For |z| = 1 the matrix H(z) is Hermitian, and for Im E �= 0 it is always
det[E − H(z)] �= 0. By duality, this implies det[T (E) − z] �= 0. �

Notes. In [9] I provided a representation of T (E) − z in terms of the corner blocks of the
resolvent of H(z). I also stated the spectral duality for the matrix T †T .
In the tridiagonal case (M = 1), blocks are numbers. If λ = L1, . . . , LN the spectral duality
simplifies to the known expression

det[E − H(z)] = λ Tr T (E) − λz − λ∗ 1

z
. (12)

3. The spectrum of exponents

Let us fix E real or complex and denote as za(E) = eξa+iϕa , a = 1, . . . , 2M , the eigenvalues
of T (E). The real numbers ξa(E) are the exponents of the transfer matrix. For real E the
symplectic property (8) assures that exponents come in pairs ±ξa(E).

The property |det T (E)| = 1, see (7), implies

2M∑
a=1

ξa(E) = 0. (13)

When considering an ensemble of random Hamiltonian matrices with tridiagonal block
structure, one is often interested in the corresponding ensemble of transfer matrices. Being a
product of N random matrices, a transfer matrix develops exponents ξa(E) that asymptotically
grow linearly in the length N [20], with a coefficient known as the Lyapunov exponent:

γa(E) = lim
N→∞

1

N
〈ξa(E)〉. (14)

For tridiagonal random matrices there is just one pair of opposite Lyapunov exponents, which
can be evaluated with the Herbert–Jones–Thouless formula [21], with the knowledge of the
average density of eigenvalues

γ (E) = constant +
∫

dE′ρ(E′) log|E − E′|.
The extension to a complex value E is discussed in [22]. For the Anderson model [23] or band
random matrices [24] there are several numerical studies of Lyapunov spectra. In these cases
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of great physical interest, transfer matrices are derived from the Hamiltonians and the analytic
approach is difficult.

It is interesting to note that an analytic formula relating the distribution of the exponents
to the spectrum of the Hamiltonian is possible. Note that the following statements are true for
a single and general block-tridiagonal Hamiltonian.

We shall deduce several results from

Proposition 3.

∫ 2π

0

dϕ

2π
log|det[E − H(eξ+iϕ)]| =

N∑
i=1

log|det Li| +
1

2

2M∑
a=1

|ξ − ξa(E)|. (15)

Proof. The duality relation (11) gives

log|det[E − H(eξ+iϕ)]| −
∑

i

log|det Li | = −Mξ +
1

2

2M∑
a=1

log|eξa+iϕa − eξ+iϕ|2

= 1

2

2M∑
a=1

{ξa + log[2 cosh(ξa − ξ) − 2 cos(ϕa − ϕ)]}

= 1

2

2M∑
a=1

|ξa − ξ | −
∞∑

�=1

2M∑
a=1

cos �(ϕa − ϕ)

�
e−�|ξa−ξ |. (16)

We used equation (13) and the formula (see equation 1.448.2 in [25])

log[2 cosh x − 2 cos y] = |x| − 2
∞∑

�=1

cos �y

�
e−�|x|.

Equation (16) is the Fourier expansion of log|det[E −H(eξ+iϕ)]|, which is a periodic function
of ϕ. The constant mode is just the proposition. �

In the special case ξ = 0, the matrix H(eiϕ) is Hermitian, and (15) yields a formula for the
sum of positive exponents (E can be complex).

Proposition 4.

∑
ξa>0

ξa(E) = −
∑

i

log|det Li | +
∫ 2π

0

dϕ

2π
log|det(E − H(eiϕ))|. (17)

By taking the derivative in ξ of (15) we obtain the spectral counting function, which counts
the exponents less than ξ , for any complex value E;

N (ξa(E) � ξ) =
2M∑
a=1

θ(ξ − ξa(E)) (18)

= M +
d

dξ

∫ 2π

0

dϕ

2π
log |det[E − H(eξ+iϕ)]|. (19)
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We now write |det[E −H(z)]| in terms of the eigenvalues En(z) and their complex conjugate,
which equals En(1/z∗), and evaluate the derivative:
d

dξ
log|det[E − H(eξ+iϕ)]|

= −1

2

∑
n

(
1

E − En(z)

∂En(z)

∂ξ
+

1

E∗ − En(z)∗
∂En(z)

∗

∂ξ

)

= − 1

2i

∑
n

(
1

E − En(z)

∂En(z)

∂ϕ
− 1

E∗ − En(z)∗
∂En(z)

∗

∂ϕ

)
. (20)

Let us denote by N+(E) and N−(E) the numbers of positive and negative exponents of T (E),
respectively. We have

Proposition 5. N+(E) = N−(E).

Proof. For real E we know that the exponents come in pairs ±ξa(E), because of proposition 1.
Let us consider the case Im E �= 0.

As a consequence of duality we derived that no eigenvalue of T (E) is on the unit circle,
thus all exponents are nonzero: N− + N+ = 2M . Therefore, if we set ξ = 0 in (19), the left
term is N−. We now show that N− = M or, equivalently, that the integral in (19) vanishes for
ξ = 0. In expression (20) the eigenvalues En(eiϕ) are real periodic functions of ϕ in [0, 2π],
then

N−(E) − M =
NM∑
n=1

∫ 2π

0

dϕ

2π

dEn

dϕ

Im E

(Re E − En)2 + (Im E)2
= 0. �

As a function of ϕ (ξ is fixed) an eigenvalue En(eξ+iϕ) makes a loop γn in the complex
E plane. The loop γ ∗

n of E∗
n is specular with respect to the real axis. Integration in ϕ of (20)

yields Cauchy integrals

N (ξa(E) < ξ) = M +
1

2

∑
n

(∫
γn

dE′

2π i

1

E′ − E
−

∫
γ ∗

n

dE′

2π i

1

E′ − E∗

)
.

The first integral is the winding number of the (oriented) trajectory γn of En(eξ+iϕ) around the
value E. The second integral is the winding number of γ ∗

n around E∗ and has opposite sign
because of opposite orientation.

We then obtain a nice geometric result.

Proposition 6. N (ξa(E) < ξ) = M + W(E). The number of exponents of T (E) less than ξ

equals M plus the total winding number of loops of eigenvalues En(eξ+iϕ), −π < ϕ < π , that
encircle E.

As I mentioned, these formulae hold for a single general block-tridiagonal Hamiltonian
matrix and its transfer matrix. For a statistical ensemble of Hamiltonians one performs
ensemble averages in place of a phase average, and deals with Lyapunov exponents. Souillard
(quoted in [20]) obtained the following formula for the positive Lyapunov exponents, which
is the statistical analogue of (17):

1

M

∑
a

γa(E) = constant +
∫

dE′ρ(E′) log|E − E′| (21)

where ρ(E) is the ensemble averaged spectral density of the Hermitian Hamiltonians. I am
not aware of any statistical analogue of (19).
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4. Bands, arcs and energy level motion

Spectral duality provides information on the positions of the eigenvalues of H(z) and their
motion under variations of the boundary parameter z.

It is useful to introduce the notion of a discriminant. If za(E) is an eigenvalue of T (E),
the discriminant is the eigenvalue of T (E) + T (E)−1 with the same eigenvector:

�a(E) = za(E) +
1

za(E)
= 2 cosh ξa cos ϕa + 2i sinh ξa sin ϕa. (22)

Since the symplectic property implies that 1/z∗
a is an eigenvalue of T (E∗), it is, in general

�a(E
∗) = �a(E)∗. (23)

Let us begin with the simpler case where Hi,Li are real matrices. Then T (E∗) = T (E)∗

and the eigenvalues of the transfer matrix come in pairs za and 1/za, a = 1, . . . ,M . Moreover,
if E is real, the characteristic polynomial of T (E) has real coefficients and roots also come in
pairs za, z

∗
a .

The spectral duality reads
M∏

a=1

[(
za +

1

za

)
−

(
z +

1

z

)]
= det[L1 . . . Ln]−1 det[E − H(z)]. (24)

Therefore, the M equations

�a(E) = z +
1

z
(25)

provide the NM eigenvalues of H(z), which are naturally classified in subsets with label a.
We consider two cases: |z| = 1 and z real.

When z = eiϕ all eigenvalues of H(eiϕ) are real periodic functions of −π � ϕ < π .
Each equation �a(E) = 2 cos ϕ provides a number na � 0 of real solutions, and
n1 + · · ·+ nM = NM . This means that y = �a(E), as a function of the real variable E, crosses
na times the strip −2 � y � 2 parallel to the E-axis. No extrema are allowed in the strip, for all
branches must cut na times the lines y = 2 cos ϕ, to ensure thatH(eiϕ) has NM real eigenvalues
for all ϕ. All branches of the functions �a(E) cross their bands in the eigenvalues of H(i)

(see figure 1).
By changing ϕ the eigenvalues span bands in the real axis

E = Ea,j (ϕ) a = 1, . . . ,M j = 1, . . . , na

with extrema given by the eigenvalues of the periodic (ϕ = 0) and antiperiodic (ϕ = π)

Hamiltonians. The velociy of level motion is

∂E

∂ϕ
= − 2 sin ϕ

�′
a(E)

. (26)

In the turning points the velocity vanishes. The second derivative is known as the curvature
[1, 26, 27]. This dynamics is invariant under the ‘time-reversal’ operation ϕ → −ϕ,
corresponding to the transposition of the Hamiltonian matrix. Bands with the same label
a may at most share an extremum, while bands related to different a may overlap. When
a branch of �a and a branch of �a′ cross inside the strip at a point (E, 2 cos ϕ), there is a
crossing of two eigenvalues of H(eiϕ) (and a collision of two pairs of eigenvalues of T (E) in
the unit circle). This is a highly non-generic occurrence for one-parameter Hermitian matrices.
Energy bands of Hermitian periodic tridiagonal matrices (M = 1) were studied in [28].

When z = eNg , with g � 0, the matrix H(z) is real. The equations �a(E) = 2 cosh(Ng)

provide all NM eigenvalues in subsets labelled with a. They imply the equation ξa(E) = ±Ng.
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E

+2

 –2

y

Figure 1. Energy bands of a pentadiagonal matrix (M = 2), solution to �a(E) = 2 cos ϕ, a =
1, 2,−π � ϕ < π .

-2 2 4 6

-0.04

-0.02

0.02

0.04

-2 2 4 6

-0.1

-0.05

0.05

0.1

Figure 2. The 600 eigenvalues of an heptadiagonal matrix (M = 3, N = 200), with diagonal
uniform disorder |ai | < 0.5, unit off-diagonal elements, and z = 20 (left), z = 390 (right).

For finite g and large N, given that the exponents grow linearly in N with a coefficient that
defines the Lyapunov exponent, the eigenvalues of the non-Hermitian matrix H(z) distribute
along M level lines

γa(E) = g. (27)

The distribution along arcs is shown in figure 2, for large z. For small z the pattern of the
eigenvalue distribution is complicated and intertwined. For g small enough, in continuity with
the description given for the periodic case, the eigenvalues still belong to the real axis, outside
their periodicity bands. By increasing g, eigenvalues with the same label a approach pairwise
until a pair condenses. Correspondingly, an extremum is reached for the function �a(E) and
the pair of eigenvalues acquire opposite imaginary parts. There is a critical value ga of g for
this to happen for each label a:

�′
a(Ea) = 0 �a(Ea) = 2 cosh(Nga). (28)

Finally, let us mention the case where Hi = H
†
i and Li are not real matrices. Another

spectral identity is needed, which follows from spectral duality and the symplectic property
[8]. It holds for any value of z or E in the complex plane
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det

[
T (E) + T (E)−1−

(
z +

1

z

)]
= |det L1 . . . Ln|−2 det[E−H(z)] det

[
E−H

(
1

z

)]
. (29)

For z = eiϕ the right-hand side is zero in 2NM real solutions, Ei(ϕ) and Ei(−ϕ), i =
1, . . . , NM , which span the same NM bands as ϕ varies in −π, π . They are degenerate in
ϕ = 0 (y = 2) and ϕ = π (y = −2). The strip −2 � y � 2 is thus crossed by 2NM

branches y = �a(E) which join pairwise at the boundaries y = ±2 of the strip. Each pair,
when intersected with the line y = 2 cos ϕ, determines the same band which the eigenvalue
E(ϕ) covers with different speeds in the two directions.

For z = ±eNg we have again condensation of pairs of eigenvalues, which no longer
become complex conjugate pairs. For large N the eigenvalues move into M level curves
γa(E) = g (the case g < 0 leads to a different set of curves since in this case Lyapunov
exponents need not be opposite pairs).

5. Conclusion

The spectral duality is a simple identity that links the eigenvalues of a matrix with block-
tridiagonal structure to those of the corresponding transfer matrix. I have deduced some
analytic properties for the exponents (sum of exponents, N+ = N−, counting function). They
involve a phase average on eigenvalues of the block matrix.

The large N stability of exponents allows us to describe the distribution of complex
eigenvalues of the block matrix along arcs. The discriminants classify real eigenvalues
(periodic case) in bands, and govern their motion and collisions. These exact properties are
expected to allow a more analytic approach to the difficult study of Lyapunov spectra of
transfer matrices, which are derived from an ensemble of random Hamiltonians. They also
extend to block matrices some results which were known for purely tridiagonal matrices.
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